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The continuous spectrum of the linear Boltzmann operator with constant field 
is derived. It is found that a sufficiency relation for runaway phenomena is 
consistent with another sufficiency relation for the hydrodynamic regime to 
exist. There is a further class of systems whose behavior lies in between these 
two extremes. 
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1. I N T R O D U C T I O N  

Knowledge of the structure of the spectrum of the linear Boltzmann 
operator for the spatially inhomogeneous and non-zero-field cases is useful 
in the theory of electron swarms. (1) The spectrum is only known for a few 
special cases of the molecular potential <a3/and then only for the collision 
operator J .  Nicolaenko <4) derives the properties of the spatially 
inhomogeneous hard-sphere operator. We will concern ourselves with the 
non-zero-field operator, of most concern to swarm physics. 

The linear Boltzmann operator is given by 

g f = c ' V f  + a ' d ~ f  + ~ f  (1) 

where a is the field term, and Y is the collision operator. 
We can split the collision operator into its direct and restitutional 

parts: 

i f =  v ( c ) f  - g f f  = v ( c ) f  -- f k(e, e') de' (2) 
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where (5) 

and 

v(c) =--2~ f fo(Co) get(O, g) sin 0 dO de0 
lT~t o 

l m§ ( re+m0 c c)  
k(e, c') =mo \ 2m ~ / j COS4 0 (7" 0, 2too cos 0 

• e + r n  ( c - c ' ) - m o  2morn+m~ ficos0 ,e-e ' l)dOd~ 

where a is the differential collision cross section, e and Co are the velocities 
of the two particles before the collision, and g = e - c o .  The primed 
variables refer to velocities after the collision has occurred, and 0 and e are 
the polar coordinates of fi, with the polar axis aligned with e -  e'. The colli- 
sion frequency v is spherically symmetric, as only two-body collision are 
taken into account. Under quite general circumstances, scg is compact, even 
though an arbitrary cutoff must often be applied to the potential in order 
for v(c) and ~ to be defined. For example, if k is Lebesgue square- 
integrable, then K is trace-class, and hence compact. For the purposes of 
this paper, we assume that K is compact. We do this to use a generalized 
version of Weyl's theorem, which states that adding a compact Herrnitian 
operator to a Hermitian operator does not alter the continuous part of the 
spectrumJ 6~ We can apply this to the collision operator to conclude that 
the continuous spectrum of ~ is just that of v(c), i.e., the range of values 
that v(e) takes. For the hard sphere, and hard-power-law potentials 
[V(r) ocr -s with s > 5 ] ,  v(c) has a minimum at c = 0  and increases 
monotonically with c. For soft power-law potentials (s<5) ,  v(c) has a 
maximum at c = 0  and decreases monotonically toward 0. The case of 
Maxwell molecules (s = 5) is interesting because v(c) is a constant function, 
and so J has a pure point spectrumJ 2~ 

This paper is concerned with generalizing the above results to the 
spatially inhomogeneous and non-zero-field case. A lot of care must be 
taken in this case, as the operators are no longer self-adjoint, and the 
essential spectrum that remains invariant under compact perturbation and 
is not so easily characterized. 

The final point to be made clear is the space on which the operator 
acts. The only property that we really need to use is that its elements ~b(e) 
should remain bounded as c ~ ~ .  This obviously includes any of the 
spaces Lp(~3), p c  [ l ,  oo]. However, to make the discussion of spectral 
properties simpler, we shall specialize to the Hilbert space L2(~ 3) even 
though s is arguably a more natural choice. 
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2. S P A T I A L L Y  I N H O M O G E N E O U S  A N D  N O N - Z E R O - F I E L D  
C A S E S  

Discussing the spectrum of the Boltzmann operator is equivalent to 
discussing the spectrum of the Fourier transform in position space, i.e., it 
is the same as the union over k of the spectra of 

5f = i c . k  + a.8r + v(c) 

where k e ~3. 
It is convenient at this point to introduce a cylindrical coordinate 

system in which cz is the component of e in the direction of a and cz is the 
component transverse to it, and Co is the angular component. Introducing 
the function w(c)=exp( sgn(c )f  v(c')c' ic~c. k ic:k~\ 

a (c'2-c2z) r o d e ' -  a +~a--a) (3) 

then we can relate 5r to the derivative operator by means of 

~L~ = w a  �9 c ~ w  - 1  (4) 

Let 20 be defined by 

20 = c~lim -cl f] v(c') dc'= ~lim v(c) (5) 

Now the resolvant may be written explicitly: 

f 
~o e 2u 

-e'~Czw(e) c~ w(--~l,u) ~(u) du' R e 2 > 2 ~  

, fez  e 2u 
e'~C~w(c) -,2 w(c• , u) (~(u) du, Re 2 < 20 

(6) 

We shall consider the case of Re 2 = 20 later. We can rewrite the resolvant 
as an integral operator with kernel 

r(Cz, c'z)= 
- 6 ( c •  "~(Cz-c'~) , Re 2 > 2 0  

, w(c)  e~(Cz_c~ ) 6(c• - c'l) O(cz - Cz) - ~ )  , Re 2 < 2o 

(7) 

In the first case, the kernel is nonzero only when c'z > Cz. As cz--* 0% the 
tel:m 

e ~(~- ~;)w(c)/w(e') ~ e (~- ~~ ~) -~ 0 
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Since w remains 
with respect to 
argument holds 
function, which 
and so the set 
resolvant set. 

The situation 

bounded as c• ~ 0% it is clear that the kernel is integrable 
c, and that ~ r(e, e ' ) d e  is a bounded function. A similar 
in the case of Re 2 < ;to, so the kernel r is a bounded 

means that the resolvant operator ( 5 r  -1 is bounded, 
of all 2 with real part not equal to 2o lies within the 

when Re 2 = 2o depends on the asymptotic properties of 

( i f ? , )  ? =  2 o - ~  v(c)dc' c, as c , -~oe  

If this term diverges, then so does w or its inverse. One can choose 
whichever of the cases in Eq. (6) that is defined--if the resulting kernel is 
integrable, then the resolvant is bounded; if not, then the resolvant is 
unbounded, and the line Re 2 = 2o is the continuous part of the spectrum 
of ~r In the case where 7 converges to a finite quantity [-for example, if 
v(c) is analytic at oc ], then ~ is clearly related by a similarity transforma- 
tion to a .  ~?c + 20, and so has the same spectrum (a continuous spectrum 
along the line Re 2 = 2o). 

In order to discuss the spectrum of 5s + 3if, we need to recall some 
facts from Fredholm operator theory. (7) A Fredholm operator d is closed 
operator satisfying: 

1. R a n g e ( d )  is closed. 

2. e ( d )  < o% where c~ is the nullity of d .  

3. fl(d) < 0% where fl is the deficiency of d .  

The index of d is given by 

i ( ~ r  = ~ ( d )  - f l ( d )  

For arbitrary ~ the q~-set, denoted by ~ d ,  is the set of those complex 2 
for which d -  2 is a Fredholm operator. The properties that we will use 
are: 

1. 

2. 

. 

4. 

qs ,  is open. 

If d is closed, and ~ is d -compac t ,  then ~ ,  = 4 5 , + e  and 

i ( d - 2 ) = i ( d + ~ - 2 )  for 2e~br  

i ( d - 2 )  is constant on any component of qs , .  

a ( d - 2 )  and f l ( d - 2 )  are constant on any component of ~b d 
except possibly on a discrete set of points at which they have 
larger values. 
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The essential spectrum according to Wolf, (8) a~w, is defined to be the 
complement of q~, in the complex plane. In the case of 5 ~ the essential 
spectrum Crew(50 ) is the line given by Re 2 = 20, unless 

f~ ~ w(c)e x~ dcz 

converges, in which case, ae,.(50)= ~ .  
Since ~'~ is compact, ~b~e_~c=~b s consists of the two half-planes 

separated by the line Re2=)L 0. We also know that the index 
i(50 - sf( - 2) = 0, V;t e ~b~. It remains to be shown that c~(50 - ~ - 2) = 0 
(or equivalently fl) on any open subset of qs~,,. Then there remains only a 
discrete set of points at which the nullity may differ from zero--these 
correspond to the discrete eigenvalues of 5 0 - d .  

Since the two sections of &~ are half-planes, we can choose 2 e &~ 
with 121 sufficiently large to ensure that 11(50-2) 11] < I I~l l - l .  Then we 
can write 

(50-x-~)-~=(50-2)  ~ ~ (50-~)-JyJ (8) 
. i=  0 

which converges to a bounded operator. This means that there is in both 
parts of ~ an open subset that is part of the resolvant of 5 ~  ~f, and 
hence e ( 5 0 -  ~ -  2 ) - -0  on this open set. To summarize this section, we 
have proved that if Y is compact, ~ = 5 0 -  ~# has the same continuous 
spectrum as 50, namely the line Re 2 = 2o, unless 

fo w(e)e )'~ dcz< oo 
0:3 

in which case there is no continuous spectrum. 

3. H Y D R O D Y N A M I C S  A N D  R U N A W A Y S  

In the previous section, the continuous spectrum of the Boltzmann 
operator was linked to the velocity-dependent collision frequency. This is 
important in the theory of swarms, as it is known that if the spectrum has 
an isolated eigenvalue at zero, then a hydrodynamic regime exists where 
the transport coefficients such as drift velocity approach a constant value 
over a characteristic time. (9) Conversely, it is necessary for the spectrum to 
be continuous at zero for runaway to occur, where the swarm particles are 
accelerated forever, and no meaning can be attached to drift velocity. 

822/'66/3-4-21 
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On the other hand, Cavalleri and Paveri-Fontana (~~ have shown 
that the existence of S~ v(c') dc' is sufficient for the runaway effect to'occur. 
From Eq. (5) we see that the condition of the spectrum being continuous 
at zero is equivalent to saying that limc ~ ~ c 1 ~; v(c') de' = 0, and this is 
not the same as Cavalleri and Paveri-Fontana's condition. There is a class 
of system for which ~;v(c')dc' diverges sublinearly that is not clearly 
hydrodynamic or runaway. 

We can study this phenomenon with a one-dimensional exactly 
solvable model, which is a generalization of the classical BGK model. In 
this model we take the BGK form of the restitutional part of the collision 
operator, i.e., a projection onto the background equilibrium distribution: 

JY~f = v(c) fo(c) f f(c, t) dc (9) 

We can simplify the solution of this model with the spatial average 
f(~ r)dr, as it contains sufficient information to calculate the 
transport coefficients, for example, drift velocity, by Var--S cf(~ dc'(~) 

The model equation now reads [-dropping the superscript (0)] 

[~t + a~c + v(c)] f(c, t) - v(c) fo(c) = 0 (10) 

If we make the substitution 

then Eq. (10) is transformed into 

(~, + a~c) f'(c, t)= v(c) fo(c) exp ( ;  ~ v(c') dc') (12) 

The homogeneous part of this equation is clearly satisfied by a simularity 
solution, and a particular solution is given by a time-independent solution, 
so the general solution reads 

f ( ,t) ~(c-at)+ v(c') fo(c')exp v(e")dc" dc' (13) 

where ~(c) is defined by the value of f at time t = 0: 

~(c)=exp ( l  I~ v(c') dc') f(c, O) 

1 fo v(c')f~ v(c")dc" dc' 
a 



Spectrum of Linear Boltzmann Operator 1009 

When this is substituted into (11), we find 

fc, t ) = e x p ( -  ! f [ '  Cv(c')dc')f(c-at, O) 

( l f ~  ) f f  +exp - a  v(c')dc' I v(c')fo(e') 
a - a t  

The first term of the solution depends on the initial valocity distribu- 
tion, and so is "nonhydrodynamic." The second term is independent of 
the initial conditions, and as t ~  0% the integrand is cut off by 
fo(c')exp[(1/a)~o'V(C ") dc"] as c ' ~ - 0 %  and so converges to a time- 
independent solution. We can identify this term with the hydrodynamic 
solution. 

Let us now look at the evolution of the drift velocity from a delta 
initial distribution f ( r O) = (5(c - c0): 

v~= cf(c)=(at+co)exp - -  v(c')dc' +vl(t) (15) 
a c o  

where vl(t) converges to a finite value as t ~ oe. 
Cavalleri and Paveri-Fontana's condition (that the integral exists as 

t ~  oe) corresponds to a "ballistic" regime, in which the swarm is 
accelerating with acceleration a e x p [ -  (l/a) ~-~c0 v(c') dc']. If the integral 
diverges slower than the natural logarithm, then this term dominates in the 
infinite-time limit, and the drift velocity diverges sublinearly. However, if 
the integral diverges faster than the natural logarithm, the drift velocity 
converges to a finite value at t = 0% but the convergence is over an infinite 
time scale (i.e., slower than exponential) unless the divergence of the 
integral is at least linear. 

Another point to be made is that even though this theory encompasses 
the conditions by Cavalleri and Paveri-Fontana, and also the Waldman- 
Mason (~2) theory, a major drawback is immediately visible upon com- 
parison with the experimental data. (13 15) This is that 2o is independent of 
the ratio E/N, as is Cavalleri-Paveri-Fontana condition; however, the 
experimental data show a marked contrast between regions of E/N where 
the behavior of the system is hydrodynamic and those where runaway 
sets in. The only situation where this sort of behavior can be allowed 
theoretically is when 2o--0 and the Cavalleri-Paveri-Fontana condition 
does not hold. This is certainly the case with the experiments of Ness and 
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Robson (~5) in water vapor. In this case, v(c)~c -1. A more sophisticated 
theory is clearly needed in this case, whereby when E/N is small, an 
approximate Boltzmann equation is used that reflects the dominance of a 
rising collision frequency; at intermediate E/N, the approximation reflects 
the sampling of the fast decay in v(c); and finally at very high E/N the 
approximation will reflect the quenching of the runaway by inelastic 
processes. 

4. CONCLUSION 

In this paper, the continuous spectrum of the linear Boltzmann 
operator with a field or spatial gradient term has been related to the 
velocity-dependent collision frequency. This has demonstrated the 
consistency of Cavalleri and Paveri-Fontana's (~~ result with that of 
Standish. (9) It has put runaway phenomena and hydrodynamic phenomena 
as two ends of a continuum, with a class of nonhydrodynamic phenomena 
in between. 
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